def financial_intelligence(query: str, analysis_type: str):
"""analysis_type: 'fundamental', 'technical', or 'news'"""
sources = {
"fundamental": ["valyu/valyu-stocks-US", "sec.gov", "investor.com"],
"technical": ["valyu/valyu-stocks-US", "tradingview.com", "yahoo.com"],
"news": ["bloomberg.com", "cnbc.com", "reuters.com", "marketwatch.com"]
}
response = valyu.search(
query,
search_type="all" if analysis_type in ["fundamental", "technical"] else "web",
included_sources=sources[analysis_type],
max_num_results=10,
response_length="medium",
category="financial analysis"
)
if response.success:
print(f"=== {analysis_type.upper()} Analysis ===")
print(f"Query: \"{query}\"")
for i, result in enumerate(response.results, 1):
print(f"\n{i}. {result.title}")
print(f" Source: {result.source}")
print(f" Relevance: {result.relevance_score:.2f}")
print(f" URL: {result.url}")
# Show excerpt for financial data
if len(result.content) > 200:
print(f" Preview: {result.content[:200]}...")
if result.publication_date:
print(f" Date: {result.publication_date}")
return {
"results": response.results,
"analysis_type": analysis_type,
"query": query
}
return None
# Usage examples - include timeframes in natural language
tesla_fundamentals = financial_intelligence(
"Tesla financial performance Q3 2024 earnings revenue profit margins",
"fundamental"
)
apple_news = financial_intelligence(
"Apple latest news this week product announcements stock updates",
"news"
)
bitcoin_technical = financial_intelligence(
"Bitcoin price analysis technical indicators support resistance levels recent trends",
"technical"
)